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Note 

Enhanced Boundary Pressure Update for 
Incompressible Flow Simulation 

Incompressible flow simulation is frequently performed using a primitive variable 
(u, v, p) formulation of the governing equations. These include a momentum equa- 
tion in each coordinate direction and a pressure Poisson equation. The pressure 
Poisson equation incorporates mass conservation and assists in decoupling the 
pressure from the velocity during an iterative lagging procedure. The Poisson equa- 
tion is elliptic in nature and requires specification of boundary pressures over each 
boundary in the flow domain. However, the pressure distribution on the surface of 
bodies in the flow is not known a priori and is sought as part of the problem 
solution. Several techniques have been proposed for the update of boundary 
pressure values as the simulation progresses toward satisfaction of mass conserva- 
tion (zero dilatation), Two of these are the method of Viecelli [l, 21, and the 
Raithby-Schneider PUMPIN technique [3]. In a recent hydrodynamic investiga- 
tion performed in body-fitted coordinates [4], a modification of the method of 
Viecelli was developed and compared with the two aforementioned methods. The 
modification resulted in a significant acceleration of the boundary pressure update 
process, enabling extended iteration for reduction of the dilatation residual used as 
the measure of incompressibility of the flow. 

Briefly, the method of Viecelli updates the boundary pressures in response to the 
dilatation at each boundary point. The dilatation Di defined in Eq. 1 is zero in an 
incompressible flow, and is held as small as possible in a numerical approximation 
to incompressible flow, 

Di=u,+u,.. (1) 

If the dilatation is positive at a boundary point, the pressure is reduced to prevent 
expanding fluid from crossing the solid boundary. If the dilatation is negative, the 
pressure is increased to prevent separation from the boundary. A zero dilatation 
value requires no pressure correction. Viecelli offers the following relation for 
update of the pressure from the k to the k + 1 iteration level, 

pS2 Di 
P k+‘=pk-E-, 

2At 

where p is the fluid density, 6 is the cell spacing, At is the timestep, and E is a 
parameter held less than unity to maintain stability. The optimum value of the 
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parameter E is found by trial and error. In many current applications, a body-fitted 
coordinate transformation is used, resulting in nonuniform cell spacing [S]. 
Thompson and Shanks [6] cite work by Hodge to transform the Viecelli pressure 
update to body-fitted coordinates in two dimensions. After nondimensionalization 
and transformation to the curvilinear coordinates (5, q), Eq. (2) is represented as 

2EJ’ Di 
P k+l =pk- 

(Ct+y)df (3) 

where 

J= XYY, -xr,yt (4) 

CI = x; + y; (5) 

y=x:+ y: (6) 

(7) 

Under a body-fitted coordinate transformation, uniform cell spacing in the com- 
putational plane seldom leads to a uniform spacing in the physical plane. Mesh 
generation techniques emphasize the concentration of grid points in regions of large 
gradients and an increase in grid point spacing in regions of small anticipated 
change. In Eq. (3) the update process is dependent upon the values of the Jacobian 
determinant J, as well as the metric coeflicients cx and y at each boundary grid point 
in the flow domain. The square of the cell spacing determines the rate at which the 
update process converges toward a zero dilatation flow. If the value of the cell 
spacing is very small, as required in regions of large gradients, the update process 
will require an extensive amount of computational effort. Also, local variations 
in grid point spacing can be viewed as effectively varying the parameter E in 
comparison to a uniformly-spaced mesh. Thus a single optimum value for the 
parameter E cannot be determined. 

The detail of a computational mesh generated between a cylinder and a plane 
boundary is shown in Fig. 1. Following satisfactory evaluation of the truncation 
error as a function of mesh skewness and grid point density, the simulation of low 
Reynolds number flow using the Viecelli update technique was found to require in 
excess of 90 cpu s per time step to achieve a nondimensional dilatation of less than 
10 _ *. These figures are given for a NAS/9000 mainframe system where both the cpu 
time requirement, and consequently, the accuracy, were unsatisfactory for a 
dynamic simulation involving many time steps. 

The convergence of the Viecelli boundary pressure update method toward a zero 
dilatation approximation was examined in detail for the two-boundary configura- 
tion shown in Fig. 1. It was evident that the wide range of cell spacing about the 
cylinder and at the plane boundary led to rapid resolution in areas of large cell 
spacing (large J2 value) while others with small cell spacing were making negligible 
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FIG. 1. Computational mesh for cylinder approaching a plane boundary. Ordinate and abscissa are 
scaled to cylinder diameter units. 

progress toward an incompressible flow solution. Simply increasing the parameter 
E had the same destabilizing effect in nonuniform spacing that Viecelli’s analysis 
predicts for uniform spacing. However, the modification developed in [4] involved 
use of the values of .I, c(, and y computed for the largest cell spacing on the cylinder 
in calculations over the entire cylinder boundary and was found to enhance the 
speed of the update process while maintaining stability over the entire range of 
mesh aspect ratios investigated. By choosing the coefficients of the transformed 
dilatation in Eq. (3) in this manner, an approach to an effective optimum value of 
the parameter E is achieved. However, as noted above, the nonuniformity of mesh 
spacing under the subject body-fitted coordinate transformation leads to a large 
number of local optimum values. Further examination of the problem may lead to 
alternate approaches to accelerating this boundary pressure update technique. 
Stability was maintained as long as values for the largest cell on one boundary 
remained smaller than the smallest cell on the opposite boundary with which it was 
in communication. In short, the update process for two boundaries having non- 
uniform cell spacing was found to remain stable as long as one boundary was 
allowed to converge more rapidly than the other. This conclusion resulted in reduc- 
tion of the cpu time requirement from 90 to 2.94s per time step while improving the 
zero dilatation approximation from 10 P2 to lo-‘. 
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One additional method examined was the pressure update through multiple path 
integration (PUMPIN) technique of Raithby and Schneider which was transformed 
to body-fitted coordinates and substituted for the Viecelli method at the plane 
boundary. The PUMPIN technique is based on the fact that the Navier-Stokes 
equations hold at all points in the flow field. The pressure distribution along a 
boundary is obtained by solution of a momentum equation for the pressure 
gradient using the current velocity field. The gradient is numerically integrated from 
a known initial value such as a free stream pressure. Because the current velocity 
field is not necessarily incompressible, the pressure at a boundary point achieved by 
integration along one path will not necessarily equal that obtained by integration 
along an alternate path. However, the error can be averaged over multiple paths 
and reduced in an iterative process. The PUMPIN technique would be a fast and 
effective alternative to the Viecelli update method for problems having a single 
boundary. In the cylinder and plane boundary application, it was necessary to use 
the Viecelli update at one of the boundaries to generate an initial pressure value for 
the PUMPIN technique at the other boundary. This offered no net improvement 
over the use of the Viecelli method at both boundaries. 

In summary, the boundary pressure update using the Viecelli method in multiple 
boundary problems was enhanced through selection of grid metric parameters that 
permit a more uniform adjustment of the boundary pressure field in body-fitted 
coordinates. Care must still be taken to assure the stability of the technique in 
accordance with the observations provided above. 
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